
TALK 4: HODGE�TATE SECTIONS

MARIUS LEONHARDT

Goal: Introduce the notion of Hodge�Tate-ness for sections s : GalK → π1(X,x) of the funda-
mental exact sequence of étale fundamental groups

1→ π1(XK , x)→ π1(X,x)→ GalK → 1.

Let

• K be the fraction �eld of a complete DVR, mixed characteristic (0, p),

• CK = K̂,
• X a smooth projective geometrically connected (hyperbolic) curve over K,
• x a geometric point of X,

• G := π
Qp

1 (XK , x) the Qp-prounipotent fundamental group of XK ,
• g the Lie algebra of G (a pronilpotent Lie algebra over Qp),
• Z0(G) = G, Zn(G) = [G,Zn−1(G)], Z0(g) = g, Zn(g) = [g, Zn−1(g)],
• grnZ(G) = Zn(G)/Zn+1(G) (so that gr0

Z(G) = Gab), sitting in the exact sequence

(0.1) 1→ grnZ(G)→ G/Zn+1(G)→ G/Zn(G)→ 1.

In the last talk, Leonie introduced two (equivalent) descriptions of the prounipotent group G
over Qp:

(1) as the Tannaka group of the category of unipotent Qp-local systems on XK,ét equipped
with the �bre functor ��bre over x�.

(2) as the Qp-Malcev completion of the étale fundamental group π1(XK , x): There is a
continuous group homomorphism ϕ : π1(XK , x)→ G(Qp) that is universal for continuous
group homomorphisms of π1(XK , x) into the Qp-points of a (pro-)unipotent group over
Qp.

1. Sections and Galois action on G

We use the functoriality of the following functors

(Pointed �nice� Schemes) −→ (Pro�nite Groups), (Y, y) 7−→ π1(Y, y),

(Pro�nite Groups)op −→ (unipotent Tannaka cat's/Qp), π 7−→ (RepunQp
(π), ?),

(unipotent Tannaka cat's/Qp)op −→ (prounipotent groups/Qp), (T , ω) 7−→ π1(T , ω),

(prounipotent groups/Qp) −→ (pronilpotent Lie algebras/Qp), H 7−→ Lie(H).

Construction 1.1. Let s : GalK → π1(X,x) be a section. Then every σ ∈ GalK induces the
automorphism �conjugation by s(σ)� on π1(XK , x). Using the functors above, this in turn induces
an automorphism of G (of prounipotent groups) and of g (of Lie algebras). By compatibility
with composition (i.e. functoriality), this de�nes an action of GalK on G and on g that depends
on s. If we like to stress the dependency on s, we denote this action by σ ·s −.

We think of g as a �xed (pro-�nite dimensional) Qp-vector space on which, for every choice of
section s, the group GalK acts. We aim to understand what kind of representations may arise
from an arbitrary section or, more speci�cally, from a section induced from a rational point.
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Remark 1.2. Given two sections s, s′, for every σ ∈ GalK the elements s(σ) and s′(σ) di�er by
an element aσ ∈ π1(XK , x), i.e.

s′(σ) = aσs(σ).

The (aσ)σ form a 1-cocycle of GalK with values in π1(XK , x) (equipped with the action coming
from s), i.e.

aστ = aσ(σ ·s aτ ), σ, τ ∈ GalK .

Example 1.3. Conjugation by a ∈ π1(XK , x) on π1(XK , x) induces conjugation by ϕ(a) ∈ G(Qp)
on G and hence Ad(ϕ(a)) on g, where Ad: G → Aut(g) denotes the adjoint action. By the
previous remark, we have (s′(σ)− s′(σ)−1) = (aσ − a−1

σ ) ◦ (s(σ)− s(σ)−1) as automorphisms of
π1(XK , x), so by functoriality we have

(1.1) σ ·s′ v = Ad(ϕ(aσ))(σ ·s v), σ ∈ GalK , v ∈ g.

Remark 1.4. The subgroups Zn(G) are characteristic, hence they are GalK-stable and we get
(for every section s) an induced action of GalK on G/Zn(G) and on grnZ(G). As G/Zn(G) is
the Tannaka fundamental group of the category of unipotent representations of π1(XK , x) (or
of G) of unipotency class ≤ n, this corresponds to the action of σ on the category of unipotent
representations respecting the unipotency class. Similarly for g/Zn(g) and grnZ(g).

Remark 1.5. If u is a nilpotent endomorphism of a �nite dimensional Qp-vector space V , then

exp(u) := 1 + u+
u2

2!
+ . . .

is a �nite sum and hence a well-de�ned unipotent automorphism of V . Doing this functorially
gives a well-de�ned exponential map

exp: g −→ G

for any unipotent group G over Qp. This map is an isomorphism of schemes (where g denotes the
functor R 7→ g⊗Qp

R) and can be upgraded to an isomorphism of algebraic groups if we equip g
with the multiplication given by the Baker-Campbell-Hausdor� formula: a certain (�nite) series
involving iterated Lie brackets only. See [Milne, Algebraic Groups, Ch. 15, i.p. Prop. 15.35] for
details. In this way, we even get a category equivalence

(Unipotent algebraic groups over Qp) −→ (Nilpotent Lie algebras over Qp).

Important for us is the following relationship between the adjoint representation and the expo-
nential:

(1.2) Ad(exp(v)) = exp(ad(v)), v ∈ g,

(equality of automorphisms of g), where ad(v) = [v,−]. See [Hall, Lie Groups, Lie Algebras, and
Representations, Prop. 3.35]. We silently assume that this all works also for the pro-versions,
and moreover we stop distinguishing between G (resp. Zn(G), grnZ(G)) and g (resp. Zn(g),
grnZ(g)).

Lemma 1.6. The GalK-action on grnZ(g) is independent of the section s.

Proof. There was a discussion during class about two possible proofs. Since we need both points
of view later on anyway, let us present both proofs, one direct, one using functoriality.

(1) (direct) By (1.1) and (1.2), we see that

σ ·s′ v = σ ·s v + (terms involving iterated Lie brackets between bσ and σ ·s v),

where bσ ∈ g is any element with exp(bσ) = ϕ(aσ). If v lies in Zn(g), so do σ ·s′ v and σ ·sv. Hence
all extra terms in the above equality lie in Zn+1(g), thus the action on grnZ(g) is independent of
s.
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(2) (via functoriality) The Abel-Jacobi map from X into its Jacobian J induces, on étale fun-
damental groups, a GalK-equivariant isomorphism π1(XK , x)ab ∼= π1(JK , x). Since π1(JK , x) is
abelian, the GalK-action on it is independent of the section s. On the Qp-prounipotent level, we
get a GalK-equivariant isomorphism

gr0
Z(G) = G/[G,G] ∼= π

Qp

1 (JK , x),

proving the case n = 0. For n ≥ 1, use that (from the description of the geometric étale
fundamental group as the pro�nite completion of a surface group) one has a GalK-equivariant
surjection

(1.3)
⊕

orderings ∆ of Lie brackets

T⊗n gr0
Z(g) −→ grnZ(g), v1 ⊗ · · · ⊗ vn 7−→ [. . . [[v1, v2], v3] . . . ]

(where the Lie brackets are placed depending on ∆) showing the desired independence of s. �

Remark 1.7. While the GalK-action on the graded pieces is independent of s, the GalK-action
on G/Zn(G) may depend on s! Even putting n = 1 in (0.1), where both the left hand and the
right hand term carry GalK-actions independent of s, the action on the middle term may still
depend on s.

Example 1.8. We can (at least) make gr0
Z(g) more explicit. We have a GalK-equivariant identi-

�cation
gr0
Z(g) = Vp(J),

the p-adic Tate module of J tensored with Qp. Why? In the second proof above, we showed

gr0
Z(g) ∼= π

Qp

1 (JK , x). The latter is the Malcev completion of π1(JK , x), the full Tate module

T̂ J = (lim←−n J(K)[n]) of J . It is now straightforward to see that every unipotent representation

of T̂ J over Qp factors through Vp(J), showing the desired result.

Conclusion 1.9. So far we have seen that the map

(sections)→ (GalK -representations on g)

lands inside those representations that respect the descending central series �ltration Z•(g) and,
for every n, induce a speci�ed representation on the graded piece grnZ(g).

2. Hodge�Tate sections

Remark 2.1. All grnZ(g) are Hodge�Tate representations of GalK of Hodge�Tate weights between
−n and 0. Why? For n = 0, this follows from Example 1.8 and the Hodge�Tate decomposition
of the Tate module of an abelian variety: We have a GalK-equivariant isomorphism of CK-
semilinear representations

(2.1) Vp(J)⊗Qp
CK =

(
H0(X,Ω1

X/K)∨ ⊗K CK(1)
)
⊕
(
H1(X,OX)⊗K CK

)
,

showing that Vp(J) is Hodge�Tate of weights −1 and 0 (each with multiplicity g). For n ≥ 1,
the claim follows from (1.3).

However, this does not imply that the action on g/Zn(g) is Hodge�Tate, as Hodge�Tate-ness is
not preserved under extensions.

For now, we will use the following result as a black box:

Theorem 2.2. Let s = sx for a point x ∈ X(K) (lying under the �xed geometric point x).
Then the induced action of GalK on g/Zn(g) is Hodge�Tate, i.e. there is a GalK-equivariant
decomposition

(g/Zn(g))⊗Qp
CK =

n⊕
i=0

CK(i)dn(i)
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for some dn(i) ∈ N0.

We �x such an x ∈ X(K) and its corresponding section sx for the rest of this section1.

De�nition 2.3. We de�ne a decreasing �ltration E• on (g/Zn(g))⊗Qp
CK by

Em(g/Zn(g)) =

n⊕
i=m

CK(i)dn(i),

i.e. Em is the part of Hodge�Tate weight ≤ −m under the GalK-action induced by sx.

Remark 2.4. The �ltration E• is �nite, separated and exhaustive, with En+1 = 0 and E0 =
(g/Zn(g)) ⊗Qp CK . Also the Em are Lie ideals, as GalK acts (via s) by Lie algebra homomor-
phisms on g and hence also on (g/Zn(g)) ⊗Qp CK : If e ∈ Em (wlog of HT weight −j ≤ −m)
and g ∈ (g/Zn(g)) ⊗Qp

CK (wlog of HT weight −i ≤ 0), then for any σ ∈ GalK we have

σ ·s [g, e] = [σ ·s g, σ ·s e] = χ(σ)i+j [g, e], i.e. [g, e] has HT weight −(i + j) ≤ −m and thus lies
in Em again.

We want to show an �independence of s�-result for the �ltration E•:

Lemma 2.5. For any section s′ : GalK → π1(X,x), the subspace Em of (g/Zn(g)) ⊗Qp CK is
GalK-stable for the action induced by s′.

Proof. We need to show that if e ∈ Em (wlog of HT weight −i ≤ −m) and σ ∈ GalK , then
σ ·s′ e lies in Em. Using (1.1) and (1.2) we see that

σ ·s′ e = σ ·s e+ (terms involving iterated Lie brackets between bσ and σ ·s e)
= χ(σ)i(e+ (terms involving iterated Lie brackets between bσ and e)),

where bσ ∈ g is any element with exp(bσ) = ϕ(aσ). As Em is a Lie ideal, all extra terms in the
above equality lie in Em, thus σ ·s′ e lies in Em as well. �

Remark 2.6. At this point, we have not yet shown that the de�nition of the space Em (as the
part of Hodge�Tate weight ≤ −m under the GalK-action via sx) is independent of the chosen
section sx. The previous lemma only shows that the space Em is GalK-stable for the action
induced by any section s′, not that Em is also the space of Hodge�Tate weight ≤ −m for the
GalK-action induced by s′!

We remedy this confusion by proving the following claim: If s′ is any section such that

g/Zn(g) is Hodge�Tate for all n(2.2)

(e.g. s′ = sy for some y ∈ X(K)), then the corresponding subspace E′,m of Hodge�Tate weight at
most −m w.r.t. s′ is equal to Em. This also shows that the action of GalK on (g/Zn(g))⊗Qp CK
is independent of the chosen section s′ satisfying (2.2).

Proof of the claim. We proceed by induction on n, and for �xed n, by decreasing induction on
m. The case n = 1 is OK since the GalK-action on g/Z1(g) = gr0

Z(g) is independent of s′. We
only prove the case n = 2, which indicates how the general proof works, but avoids too much
index �ghting. We use (0.1) (tensored with CK) to get a short exact sequence of CK-vector
spaces of the form

0→ A→ B → C → 0

that are also short exact sequences of CK [GalK ]-modules (with semilinear actions) for two dif-
ferent GalK-actions on B, being induced by s and s′ respectively, but for the same actions on A
and C. Here A = gr1

Z(g) ⊗Qp CK , B = (g/Z2(g)) ⊗Qp CK and C = gr0
Z(g) ⊗Qp CK . The three

1If X does not have a K-rational point, we may go to a �nite extension because Hodge�Tate-ness (and
everything we do in this section) is insensitive to �nite �eld extensions.
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representations carry �ltrations Em(A), Em(C) (both independent of s′), Em(B) w.r.t. s and
E′,m(B) w.r.t. s′. The picture is like this

0 A B C 0

E1(A) E1(B) E′,1(B) E1(C)

E2(A) E2(B) E′,2(B) E2(C) = 0

E3(A) = 0 E3(B) = 0 0 = E′,3(B)

The horizontal arrows are GalK-equivariant, hence respect Hodge�Tate weights (as there are no
non-trivial homomorphisms CK(i)→ CK(j) unless i = j) no matter which section we choose for
the action on B. This shows that E2(B) = E2(A) = E′,2(B). But then also E1(B) = E′,1(B).
This shows that the action on B is independent of the choice of s′. �

The �ltrations E• on (g/Zn(g))⊗Qp CK for varying n are also compatible, inducing a �ltration
E• on g. We are now ready for the main de�nition of this talk:

De�nition 2.7. We let h := gr0
E(g ⊗Qp

CK). A section s′ is called Hodge�Tate if h equipped
with the GalK-action via s′ is Hodge�Tate of Hodge-Tate weight 0, i.e. if h is generated as a
CK-vector space by its GalK-invariants.

Example 2.8. (1) The �xed section s = sx is Hodge�Tate. Why? By Theorem 2.2, the
GalK-representation g ⊗Qp

CK via s is Hodge�Tate. By de�nition, h is the part (more
accurately, quotient) of g⊗Qp

CK of Hodge�Tate weight 0 under the GalK-action induced
by s, so h is Hodge�Tate of weight 0.

(2) Using (2.1), we have a GalK-equivariant isomorphism

gr0
E

(
(g/Z1(g))⊗Qp

CK
)

= H1(X,OX)⊗K CK ,

so taking gr0
E picks out half of the generators of (g/Z1(g)) ⊗Qp

CK . In fact, the Lie
algebra h is a free pro-nilpotent Lie algebra in g generators over CK .

Proposition 2.9. If s′ = sy for a K-rational point y ∈ X(K), then s′ is Hodge�Tate.

Proof. By2 Theorem 2.2, the GalK-action on g ⊗Qp
CK induced by s′ is Hodge�Tate. By Re-

mark 2.6, this means that the GalK-action on E′,m = Em induced from s′ is the same as the
one induced from s, so h is Hodge�Tate by Example 2.8, part (1). �

Conclusion 2.10. Let us continue the point of view of Conclusion 1.9. The black-box Theo-
rem 2.2, the notion of Hodge�Tate sections, and Proposition 2.9 reveal the �ner structure of the
map from Conclusion 1.9:

(sections) (GalK -rep's on g respecting Z•(g) with �xed rep's on grnZ(g))

(Hodge�Tate sections) (GalK -rep's on g as above s.t. h is Hodge�Tate of weight 0)

X(K) (GalK -rep's on g as above that satisfy (2.2)).

It seems reasonable to call a representation on g pro-Hodge�Tate if it satis�es (2.2).

2There is a tiny catch: In Theorem 2.2 we assume that the point x lies below the chosen geometric point x.
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3. de Rham comparison for G

It remains to prove Theorem 2.2, which follows directly from the following �unipotent de-Rham
comparison isomorphism� [Betts, Local Constancy of prounipotent Kummer maps, Theorem
1.4(1)].

Theorem 3.1. Let K/Qp be a �nite extension3. Let s = sx be induced from a rational point
x ∈ X(K). Then there is a canonical GalK-equivariant isomorphism

BdR ⊗Qp
G ∼= BdR ⊗K πdR

1 (X,x)

of BdR-schemes, where GalK-acts on G via s and naturally on BdR.

Here, πdR
1 (X,x) is the Tannaka fundamental group of the category MICun(X,OX) of unipotent

vector bundles with integrable connection on X w.r.t. the �bre functor ωx.

Proof of Theorem 2.2. On the right hand side of the comparison isomorphism, GalK acts only
on BdR. Thus Theorem 3.1 shows that G is a pro-de Rham representation, hence is pro-Hodge�
Tate4, which is precisely the claim in Theorem 2.2. �

Let us give a sketch of the proof of Theorem 3.1, indicating where results from Leonie's talk
play a role, but not diving into full details. For simplicity of exposition, we continue to work
with smooth projective curves X, though in fact Betts proves the comparison isomorphism for
an arbitrary smooth scheme X/K. Betts compares the respective Tannaka categories after ana-
lyti�cation5 with a third Tannaka category called the pro-unipotent Riemann�Hilbert category
and denoted MICun(X,OX):

MICun(X,OX)

(unipotent Qp-local systems on Xan
CK ,ét

) MICun(Xan,OXan)

(unipotent Qp-local systems on XK,ét) MICun(X,OX)

RH BdR⊗̂K−

∼ ∼

3.1. Structure of MICun(X,OX).

• MICun(X,OX) is a �nitely generated unipotent Tannakian category with �bre functor
ωdR
x . Key ingredient here is the calculation of Ext1 in this category in terms of H1

dR,
and the following comparison for the tensor unit OX:

(3.1) BdR ⊗K H1
dR(Xan,OXan)

∼−−→ H1
dR(X,OX)

We denote the Tannaka fundamental group of MICun(X,OX) by πRH
1 (X, x).

• GalK acts on BdR, thus on OX, thus on MICun(X,OX) and hence on πRH
1 (X, x).

• By equipping the pro-representing object ERH (see Leonie's talk) of ωdR
x with a suitable

�ltration, one can equip πRH
1 (X, x) with the so-called Hodge �ltration.

3Betts makes this assumption in his article, though I am not sure it is necessary. But as written, there is a
discrepancy with our assumption.

4Up to unravelling the �pro�, this �ts into the usual formalism of HT/dR/crystalline representations as �those
with a comparison isomorphism�, compare Morten's talk 5.

5The vertical category equivalences follow from results of Illusie and rigid GAGA, respectively.
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3.2. Comparison on de Rham side.

Lemma 3.2. There is a GalK-equivariant, strictly �ltration-compatible isomorphism

πRH
1 (X, x)

∼−−→ BdR ⊗K πdR
1 (Xan, x).

Sketch of proof. Use the criterion of talk 3. For an isomorphism as claimed, we only need to es-
tablish an isomorphism on Ext1's, which can be expressed in terms of H1

dR. For the trivial bundle
OXan , this is (3.1); for arbitrary objects, use induction by the unipotency class. Compatibility
with GalK-action and Hodge �ltrations are slightly more technical. �

3.3. Comparison on étale side. Here, Betts goes via the proétale site: There are morphisms
of sites

Xan
CK ,ét

ν←−− Xan
CK ,proét

µ−−→ X.

He introduces another �nitely generated unipotent Tannakian category of �unipotent Q̂p-local
systems� on Xan

CK ,proét
together with a period sheaf OB∧dR and de�nes the Riemann�Hilbert

functor as

RH(E) := µ∗

(
OB∧dR ⊗Q̂ Ê

)
.

This functor is constructed in such a way that there is a comparison isomorphism

BdR ⊗Qp
Hi
ét(X

an
CK
,E)

∼−−→ Hi
dR(X,RH(E)).

After taking care of GalK-descent, the proof of the following Lemma is then similar to that of
Lemma 3.2.

Lemma 3.3. There is a GalK-equivariant, strictly �ltration-compatible isomorphism

πRH
1 (X, x)

∼−−→ BdR ⊗Qp
G

Together, Lemma 3.2 and Lemma 3.3 prove Theorem 3.1.
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