Kommutative Algebra Blatt 11

Abgabe: 11. Juli

Aufgabe 1.

Für einen Ring setzen wir

$$\dim(R) := \sup\{\operatorname{ht}(\mathfrak{m}) \mid \mathfrak{m} \subseteq R \text{ maximal}\}.$$

Zeige:

- (i) Sei (R, \mathfrak{m}) ein lokaler Ring. Dann ist $d := \dim(R)$ die kleinste natürliche Zahl für die es Elemente $x_1, \ldots, x_d \in \mathfrak{m}$ gibt mit $\mathfrak{m}^n \subseteq \langle x_1, \ldots, x_d \rangle$ für $n \gg 0$.
- (ii) Sei $\varphi: (R, \mathfrak{m}) \to (S, \mathfrak{n})$ eine Ringabbildung zwischen lokalen Ringen. Dann gilt

$$\dim(S) \leq \dim(R) + \dim(S/\mathfrak{m}S);$$

Gleichheit gilt wenn $R \to S$ flach ist. Gibt es ein Beispiel wo Gleichheit gilt obwohl $R \to S$ nicht flach ist?

(iii) Sei R ein noetherscher Ring. Dann gilt $\dim(R[x]) = \dim(R) + 1$.

Aufgabe 2.

Sei *R* ein Integritätsring. Zeige:

- (i) Sei $I \subseteq R$ ein Ideal mit $I \oplus R^n \cong R^{n+1}$ als R-Moduln. Dann ist I ein Hauptideal.
- (ii) Sei M ein endlich erzeugter R-Modul. Dann ist M torsionsfrei genau dann wenn $M \subseteq R^n$ für ein n. Gibt es ein Beispiel wo dies eine echte Inklusion ist?

Aufgabe 3.

Sei R ein Integritätsring mit Quotientenkörper K. Ein R-Untermodul $I \subseteq K$ heißt gebrochenes Ideal falls es ein $\alpha \in R \setminus \{0\}$ gibt mit $\alpha I \subseteq R$. Für ein gebrochenes Ideal I setzen wir $I^{-1} := \{\alpha \in K \mid \alpha I \subseteq R\}$. Ein gebrochenes Ideal heißt $II^{-1} = R$ gilt. Zeige: Angenommen, I ist faktoriell. Dann ist jedes invertierbare Ideal von I0 ein Hauptideal.

¹Aufgaben verfügbar unter https://ruthwild.gitlab.io/teaching